For larger structures, or where electrolyte resistivity is high, galvanic anodes cannot economically deliver enough current to provide protection. In these cases, impressed current cathodic protection (ICCP) systems are used. These consist of anodes connected to a DC power source, often a transformer-rectifier connected to AC power. In the absence of an AC supply, alternative power sources may be used, such as solar panels, wind power or gas powered thermoelectric generators.
Anodes for ICCP systems are available in a variety of shapes and sizes. Common anodes are tubular and solid rod shapes or continuous ribbons of various materials. These include high silicon cast iron, graphite, mixed metal oxide, platinum and niobium coated wire and other materials.
For pipelines, anodes are arranged in groundbeds either distributed or in a deep vertical hole depending on several design and field condition factors including current distribution requirements.
Cathodic protection transformer-rectifier units are often custom manufactured and equipped with a variety of features, including remote monitoring and control, integral current interrupters and various type of electrical enclosures. The output DC negative terminal is connected to the structure to be protected by the cathodic protection system. The rectifier output DC positive cable is connected to theanodes. The AC power cable is connected to the rectifier input terminals.

Mix Metal Oxide (MMO) Tubular Anode

MMO Ribbon

MMO Plate

MMO Probe Anode

High Silicon Cast Iron Anode

Tubular High Silicon Cast Iron Anode-SurfacePlus

Graphite Anode

Platinized Anode

Powered by